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ABSTRACT

This paper describes an enhanced 0–2-h convective initiation (CI) nowcasting algorithm known as Satellite

Convection Analysis and Tracking, version 2 (SATCASTv2). Tracking of developing cumulus cloud ‘‘ob-

jects’’ in advance of CI was developed as a means of reducing errors caused by tracking single satellite pixels

of cumulus clouds, as identified in Geostationary Operational Environmental Satellite (GOES) output. The

method rests on the idea that cloud objects at one time, when extrapolated forward in space and time using

mesoscale atmospheric motion vectors, will overlap with the same actual cloud objects at a later time. Sig-

nificant overlapping confirms that a coherent cumulus cloud is present and trackable in GOES data and that it

is persistent enough that various infrared threshold–based tests may be performed to assess cloud growth.

Validation of the new object-tracking approach to nowcasting CI was performed over four regions in the

United States: 1) Melbourne, Florida; 2) Memphis, Tennessee; 3) the central United States/Great Plains; and

4) the northeastern United States as a means of evaluating algorithm performance in various convective

environments. In this study, 9943 CI nowcasts and 804 CI events were analyzed. Optimal results occurred in

the central U.S./Great Plains domain, where the probability of detection (POD) and false-alarm ratio (FAR)

reached 85% and 55%, respectively, for tracked cloud objects. The FARs were partially attributed to diffi-

culties inherent to the CI nowcasting problem. PODs were seen to decrease for CI events in Florida. Dis-

cussion is provided on how SATCASTv2 performed, as well as on how certain problems may be mitigated,

especially in light of enhanced geostationary-satellite systems.

1. Introduction

Convective initiation (CI) is a significant forecasting

problem within the meteorological community. The in-

ability to accurately forecast CI results in substantial

costs to society through aviation and other industries

that are affected by weather and through safety prob-

lems at large-scale social events. Given this significance,

the research community has attempted to increase the

understanding of the CI process, along with additional

attempts to forecast its occurrence with substantial skill.

There are several studies that investigate the physical

processes of CI (Wilson et al. 1988; Wakimoto and Lew

1993; Weckwerth and Parson 2006); the focus of the pa-

per presented here is the short-term forecasting (0–2 h)

of CI using data from geostationary satellites—a process

that is often referred to as ‘‘nowcasting.’’ For this study,
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CI is defined as the first occurrence of a radar echo of

intensity$35 dBZ from a growing cumulus cloud, which

follows similarly from several past studies (Browning and

Atlas 1965; Marshall and Radhakant 1978; Wilson and

Schreiber 1986; Wilson et al. 1992; Wilson and Mueller

1993; Mueller et al. 2003).

There are several tools available to aid in the now-

casting of CI. The analysis of surface observations to

detect surface-based boundaries that are responsible for

causing lift toward initiating convective storms is one of

themostwidely used techniques to identify regionswhere

convective activity will likely develop (Banacos and

Schultz 2005). These observations depict the current state

of the near-surface atmosphere very well, but they are

generally limited in spatial extent. The development of

surface-station mesonetworks has mitigated some of

these shortfalls, but these networks are limited to only

a few local regions and do not provide enough detailed

information about the environment above the surface.

The use of high-resolution numerical weather pre-

diction (NWP) models has shown promise in identifying

regions where CI may occur, especially as grid spacing

decreases (Trentmann et al. 2009). Important details from

these CI forecasts are often missing or incorrect, how-

ever, as a result of limitations from poor spatial resolution

of input and output data and of the difficulties associated

with data assimilation. Furthermore, because of current

computer resource constraints, the high-resolution, cloud-

resolving-scale NWP simulations needed to more accu-

rately forecast CI can only be applied over small regional

domains, making them intractable for general use by

forecasters.

The use of radar data has proven to be extremely

useful in CI nowcasting and in monitoring ongoing

convection for severity. Radar has been used to identify

surface boundaries and associated areas of upward ver-

tical motion, making use of biological fliers (Bachmann

and Zrni�c 2007) and the refraction index from steep

gradients of water vapor (Roberts et al. 2008). Outside

of near-surface boundary detection, one disadvantage

of using radar systems for the purpose of nowcasting CI

is that relatively large objects (raindrops, insects, etc.)

must be present in order for the radar beam to be re-

flected back to the receiver. As a result, although radar

can certainly help to monitor areas of existing convec-

tive growth, most operational radar networks are cur-

rently not set up to adequately monitor vertical cloud

growth prior to the development of significantly sizable

hydrometeors. The ability tomonitor such growth ahead

of time would considerably enhance lead times for now-

casting CI. Furthermore, the spatial coverage of radar

data is limited, especially over the oceans and in many

land areas outside of the United States. This is, perhaps,

the most limiting disadvantage of relying upon radar to

help to forecast CI on a global scale.

Although some of the methods listed above are ben-

eficial for determining which general regions are favor-

able for CI, they cannot accurately pinpoint specific

areas where convection may develop. Determining the

exact future locations of thunderstorms continues to be

problematic and is of particular interest to the aviation

community (Murray 2002; Mecikalski and Bedka 2006;

Mecikalski et al. 2008)—a fact that motivates this study.

This paper presents an updated method to identify, track,

and monitor convective-type clouds down to scales near

4 km to determine the likelihood of mature convective

storm development in the near future, that is, to nowcast

CI. The updated method is deemed significantly better

than either per-pixel cloud-tracking approaches ormethods

that do not identify cumulus clouds as unique, trackable

features in satellite imagery. Section 2 provides an over-

view of previous studies that detail the use satellite data

to monitor cloud growth. Section 3 provides the method

for the new satellite-based CI nowcasting system. Sec-

tion 4 covers results from the validation of the new sys-

tem. Section 5 discusses some of the potential sources of

error in this new system. Section 6 presents the main

conclusions.

2. Background

Roberts and Rutledge (2003) examined several cases

of convective storms that were triggered over eastern

Colorado. They compared radar trends with satellite

trends of the storms, specifically using theGeostationary

Operational Environmental Satellite (GOES)-8 visible

and 10.8-mm infrared (IR) channels. The results dem-

onstrated that, by monitoring the cloud-top properties

for subfreezing temperatures and for significant thermal

IR cooling rates, CI forecast lead times of $30 min can

be provided before the first 35-dBZ radar reflectivity

echo is detected. That study provided a framework for

the development of a satellite-only CI forecasting system

that could provide near-term CI nowcasts in radar-void

areas; this algorithm was named the Satellite Convec-

tion Analysis and Tracking (SATCAST) system [based

on Mecikalski and Bedka (2006)].

The original SATCAST had three main components.

The first component identified only cumulus clouds, at

various stages of growth, forming a convective cloudmask

(CCM; Berendes et al. 2008). Next, a tracking method

that used satellite-derived mesoscale atmospheric mo-

tion vectors (MAMVs; Velden et al. 1997, 1998; Bedka

and Mecikalski 2005; Bedka et al. 2009) was employed

to track individual cloud-top pixels between subsequent

satellite images. Last, a multispectral approach for
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monitoring the height and growth of cloud tops was used

to determine which cloud pixels were most likely to be

associated with future instances of CI. This multispectral

approach incorporated the findings from Roberts and

Rutledge (2003), along with information detailed inmany

other studies focusing on the utility of channel differ-

encing and trending toward retrieving pertinent cloud-

top-property information relevant to forecasting CI in the

near future (Prata 1989; Ackerman et al. 1992; Ackerman

1996;Mecikalski and Bedka 2006;Mecikalski et al. 2008,

2010; also Strabala et al. 1994; Schmetz et al. 1997; Baum

et al. 2000). This subsequently led to the development of

threshold-based ‘‘interest fields’’ composed of a series of

spectral and temporal differencing tests used to identify

cumulus clouds that were more likely to develop into

mature cumulonimbus in the 30–60-min time frame.

One of the main disadvantages of this original version

of SATCASTwas that the tracking was based on a single

GOES pixel, leading to inaccuracies because it allowed

for almost nomargin of error in theMAMV-based tracking

method. If a 1-km2 cloud-top pixel was not tracked with

high accuracy between two consecutive satellite-image

scans (within the confines of a single 4-km2 IR pixel),

then the temporal trending interest fields would be in-

correct. Inaccurate nowcasts of CI often resulted. In a

later study, Mecikalski et al. (2008) quantitatively ex-

plored the effectiveness of the original SATCAST sys-

tem by comparing the pixel-based output with radar data.

While highlighting some of the disadvantages of the

single-pixel algorithm, this study was also able to show

the skill of the satellite-based CI nowcasting method.

Mecikalski et al. (2010) subsequently emphasized the

benefit of using a combination of satellite channels when

monitoring vertical cloud growth. Despite these positive

findings, one of the biggest issues to contend with in such

a CI nowcasting system is the method used to track pre-

convective clouds between subsequent satellite images.

Sieglaff et al. (2011) introduced a CI system that

monitored the temporal trend of cloud properties along

with brightness temperatures TB from the GOES-12

10.7-mm channel. That study provides an alternative to

tracking cloud elements, incorporating a ‘‘box average’’

approach that centers a box of variable size over each IR

satellite-image pixel and averages the brightness tem-

peratures from all clouded pixels within the box. The

purpose of the box-averaging approach is to more easily

compute cloud-top cooling rates between two successive

images at each pixel without the higher computational

requirements associated with explicitly tracking cloud

pixels. The theory behind this method is that cloud mo-

tion is inherently accounted for, assuming that a large

enough set of box sizes will contain the cloud features of

interest between consecutive satellite-image scans. This

technique further assumes that, although the TBs of the

convective clouds are averaged over a large area, the

signal from any growing clouds remains. Two boxes are

used for this, one with dimensions of 7 3 7 pixels, and

the other with dimensions of 13 3 13 pixels, covering

;784 and ;2704 km2, respectively, when using 4-km-

spatial-resolution IR GOES data. The smaller box is

used for the averaging of TBs, and the larger box is

employed to help to mitigate errors and to limit false

cooling signals. While this method is intuitive, it often

does not allow for small-scale clouds (4–8 km2) to be

monitored and, therefore, cannot provide accurate CI

forecasts for clouds possessing lower magnitudes of

cloud-top cooling rates, because the weaker cooling sig-

nals tend to be diluted when performing spatial averaging

within the box. To demonstrate how a local-area box-

average approach can reduce the satellite retrieved sig-

nals of growing convective clouds, a case is presented in

Fig. 1 over southwesternMississippi for 7 June 2011 that

compares the object-tracking method described within

this paper with a box-averaging technique. In this case,

the object-tracking method yields a 10.7-mm cloud-top

cooling rate of 26.0 K (15 min)21 for a growing convec-

tive cloud, whereas the local-area average of cloud-pixel

TBs contained within the given box—with dimensions of

28 km3 28 km, covering;784 km2—yields a cloud-top

cooling rate of only 20.4 K (15 min)21. The cloud de-

veloped to the point of CI approximately 29 min after

the 1902 UTC satellite scan. It is important to note that

this demonstration does not represent an exact replica-

tion of the Sieglaff et al. (2011) box-average method and

that the purpose here is simply to show that an object-

based approach is better suited for monitoring smaller

convective clouds, as compared with a general box-

averaging approach.

In an effort to improve upon both of these methods,

the technique developed in this study treats each con-

vective cloud as a single entity when tracking and

monitoring its growth, as opposed to employing either

a single-pixel tracking approach or a broad-area box-

averaging approach. This study will present an improved

trackingmethodwithin the SATCAST algorithm, designed

to track and monitor the growth of convective clouds at

scales down to the spatial resolution provided by a given

geostationary-satellite instrument (4 km on GOES-12–

15; 3 km on Meteosat Second Generation; 2 km on the

forthcoming GOES-R). This new algorithm is referred

to as ‘‘SATCASTv2.’’

3. Method

The SATCASTv2 algorithm is broken into six main

components: 1) satellite data download, 2) MAMV
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derivation, 3) CCM generation, 4) cloud-object tracking

(OT), 5) spectral testing/interest-field calculations, and

6) CI forecast determination. These are described in

order below. Note that, as of the writing of this paper,

the SATCASTv2 algorithm is capable of processing in-

put data and producing output CI forecasts within ap-

proximately 2.5 min of receiving the latest GOES data,

using the computer processers and resources available at

this time. Beyond that, testing has shown that distribu-

tion of the output to product users is accomplished in

less than 1 min.

a. Acquiring satellite data

Satellite data from the GOES-13 instrument is ac-

quired regularly in real time, following the GOES-13

routine scan operations for its continental-U.S. (CONUS)

domain.As of 2010, the temporal resolution for theGOES

data is typically ;15 min but can be as low as 30 min

when the instrument is scheduled to perform a ‘‘full

disk’’ scan of Earth. Also, the spatial resolution of this

imager is 1 km for the visible channel and 4 km for the

IR channels, at nadir. The algorithm requires an input of

three consecutive GOES-image datasets, including all

five available channels for each time (visible and 3.9, 6.5,

10.7, and 13.3 mm).

b. Deriving mesoscale atmospheric motion vectors

Once the latest satellite data have been acquired, a

MAMV derivation code is used to discern cloud-pixel

velocity. ThisMAMV algorithm (Bedka andMecikalski

2005; Bedka et al. 2009) was developed for use in the

original SATCAST algorithm for the single-pixel tracking.

Once theMAMVprocessing is complete, the SATCASTv2

algorithm no longer has need for the first input satellite

image and will require only the two most recent image

datasets. Although the MAMVs derived from one triplet

FIG. 1. For 7 Jun 2011 in southwestern Mississippi, (left) a single defined cloud object of interest (yellow) tracked from two con-

secutive satellite scans, (top) one at 1845 UTC and (bottom) the other at 1902 UTC, is shown. The corresponding (center) visible and

(right) 10.7-mm IRGOES-East channels are shown for both times with a fixed 28 km3 28 km box (73 7 IR pixels of 4-km resolution)

centered over a developing cumulus cloud to show the spatial extent to which pixel averaging is occurring when performing a box

average. The object-tracking method described in this paper yields a 10.7-mm cloud-top cooling rate of 26.0 K (15 min)21 for this

growing convective cloud, and the local-area average of cloud pixel TBs contained within the box yields a decreased cloud-top cooling

rate of 20.4 K (15 min)21.
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of input satellite data are likely valid for periods as long

as 30–60 min in most cases, it is prudent to rederive the

vectors with each new satellite scan, given the quickly

changing nature of cloud motion at the mesoscale, and

especially when using such linear extrapolation tech-

niques as are used for the given method.

c. Generating convective cloud masks

While the MAMVs are being generated, another part

of the SATCASTv2 algorithm is used to create a CCM.

The CCM code takes in all of the newly acquired sat-

ellite channels and employs a supervised classification

scheme to produce an output-image array of integer-

defined cloud types (Berendes et al. 2008). From this

output, only those clouds that are deemed immature,

or ‘‘preconvective,’’ in nature are retained for further

processing, that is, cumulus, towering cumulus, warm

water clouds, and cold water clouds. Later in the pro-

cessing, pixels from these retained cloud types will be

used to define input ‘‘cloud objects’’ in the object-tracking

section of the SATCASTv2 algorithm. All other cloud

types considered to be ‘‘mature’’ or nonconvective (such

as thick ice cloud, cirrus, or stratus) are omitted.

The CCMalgorithm is heavily dependent upon visible

data for input, since the spatial texture information that

this channel provides helps to distinguish between cloud

types that have similar IR spectral signatures (Berendes

et al. 2008). Because of this reliance upon visible satellite

data, the initial version of SATCASTv2 is a ‘‘daytime

only’’ algorithm. Subsequent versions will incorporate

a nighttime cloud mask, thus making it a ‘‘day/night al-

gorithm.’’ The current version of SATCASTv2 does well

to capture the most active part of the diurnal convective

cycle, the afternoon, which accounts for a large portion

of all convective events in the United States (Easterling

and Robinson 1985).

d. Tracking cloud objects

The main innovation in SATCASTv2 is the combined

use of the derivedMAMVs with the selected cloud-type

output from the CCM to track the preconvective clouds,

here referred to as ‘‘cloud objects,’’ between the two

most recent input sets of satellite imagery. For the sake

of simplicity, this couplet of satellite data is chronolog-

ically labeled for input time 1 (T1) and input time 2 (T2),

where T2 is the newest data. This OT technique closely

follows the method of Zinner et al. (2008), in which

‘‘temporal overlap’’ is required to facilitate the tracking

of cloud objects from T1 to T2. To accomplish OT, first,

each object (all corresponding 1-km pixels) from T1 is

assigned a unique, positive integer identification number

(IDN). Next, the MAMVs are prescribed to the nearest

T1 cloud objects (Fig. 2a), such that all pixels belonging

to a given object receive the same u and y wind com-

ponents. Then, these adoptedmotion vectors are used to

linearly advect each T1 cloud object to a forecast posi-

tion that would correspond to its expected location at T2

(Fig. 2b) as based on the time difference between T1 and

T2. In theory, if the cloud still exists at T2, then there

should be overlap between the advected T1 cloud ob-

jects and the actual T2 cloud objects (Fig. 2c). Where

this temporal overlap exists, the IDN that was assigned

to a given T1 cloud object is passed on to the corre-

sponding T2 cloud object (Fig. 2d). In doing so, a means

of identifying the same clouds from two consecutive

input satellite-image times is established; thus, cloud-

object tracking is achieved.

e. Calculating interest fields

Once the OT scheme is complete, a series of spectral

and temporal differencing tests, known as CI ‘‘interest

fields’’ (Mecikalski and Bedka 2006), are performed on

each cloud object. These interest fields are adopted from

the original SATCAST algorithm (Table 1) and stem

from several previous studies, as discussed above. They

are used to diagnose certain physical properties of pre-

convective clouds that are relevant to the assessment of

CI potential: 1) cloud-top height, 2) cloud-top glacia-

tion, and 3) updraft strength.

Unique to SATCASTv2, to perform the spectral tests,

representative TBs must first be selected for each cloud

object, for all required IR channels, and for both input-

image times, T1 and T2. To acquire these representative

TBs, all pixels within each cloud object (mapped to a

1-km-resolution grid) are sorted from coldest to warmest

for a given input time, according to the 10.7-mm spectral

channel. Then the coldest 25% of pixels from each cloud

object are averaged to derive a representative TB for

that channel. Because radiation detected by the 10.7-mm

channel is subject to less absorption by atmospheric

gases than is radiation detected by the other GOES IR

channels, it is assumed thatTBs from the 10.7-mmchannel

will yield a more accurate representation of the relative

magnitudes of the temperature field across the tops of

cloud objects. Therefore, by using this coldest 10.7-mm

pixel subset theOT algorithm gains a better focus on the

colder updraft regions within cloud objects (Harris et al.

2010), whereas using an average of all pixels within an

object may lead to a blurring of the CI spectral signals

and using the single coldest 10.7-mm pixel from each

cloud object may introduce CI signal errors from pos-

sible satellite instrument noise. In situations in which

a cloud object is composed of only a few pixels, however,

the single coldest 10.7-mm TB pixel is used as the rep-

resentative subset for that cloud object. Once this per-

object subset is established, the same subset of pixels is
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used to derive the representative TB for all input IR

channels. Then the process is repeated for the other

input satellite data time (T2), and the calculation of CI

interest fields can proceed.

Using the cold-pixel subset for CI interest-field cal-

culation is of great benefit in situations involving ‘‘object

merging.’’ Object merging occurs when a single object

from T1 closes the gap between one or more other ob-

jects and overtakes the object(s) at T2, essentially join-

ing multiple objects into one (sometimes ‘‘webbed’’)

contiguous object. An example of cloud-object merging

would occur when a growing cumulus cloud, existing

within a tightly clustered cumulus field, connects with

and overtakes some of the surrounding clouds in the

field. In that case, all pixels belonging to the resulting

contiguous cloud object at T2 would inherit the unique

IDN of the original overlapping cloud object from T1.

Applying the cold-pixel-subset technique helps to focus

on the actual growing cloud fromT1 to T2 rather than on

the surrounding, merged clouds contained within the T2

object. This approach ultimately produces a more ac-

curate forecast of CI in the output.

f. Determining CI forecasts

Mecikalski and Bedka (2006) showed that, when a

significant majority of the CI interest-field critical

thresholds aremet, CI is;60% likely to occur within the

next 0–2 h. Similarly, for the current GOES SATCASTv2

algorithm, five out of the six interest-field critical thresh-

olds (from Table 1) must be met for a positive CI forecast

TABLE 1. List of CI interest fields developed for the operational

GOES-13 satellite instrument as used in SATCASTv2. Note that

some of the interest fields are ‘‘static,’’ incorporating satellite data

from only themost recent scan time, whereas others use a temporal

difference (also referred to as a ‘‘time trend’’) across the two most

recent satellite scan times.

CI interest field Critical value

10.7-mm TB 08C
10.7-mm TB time trend #[248C (15 min)21]

6.5–10.7-mm TB difference From 2358C to 2108C
13.3–10.7-mm TB difference From 2258C to 258C
6.5–10.7-mm TB time trend .[38C (15 min)21]

13.3–10.7-mm TB time trend .[38C (15 min)21]

FIG. 2. Example of the cloud-object-tracking method. (a) First, each of the T1 cloud objects (blue) is assigned an

IDN and prescribed a motion vector before being advected to a forecast-extrapolated position of where it would be

expected at T2. Next, the positions of (b) actual T2 cloud objects (yellow) are (c) compared with those of the forecast

advected T1 cloud objects.When temporal overlap exists, the IDNs assigned to the T1 cloud objects are (d) inherited

by the corresponding overlapping T2 cloud objects, which completes the OT routine.
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to be generated (Fig. 3). When fewer than five tests are

passed, a ‘‘null’’ or negative forecast for CI is assigned

for a given cloud object on the basis of information from

the current couplet of input satellite images, indicating

that the cloud object does not exhibit a strong-enough

signal of cloud-top growth and placement to justify a

positive forecast for near-future CI. It is possible for that

same cloud object to obtain a positive CI forecast when

FIG. 3. Examples of the (middle) SATCASTv2 product output and validating WSR-88D 0.58 base-reflectivity radar data from (top left

and bottom left) Mobile, Alabama, and (top right and bottom right) Tallahassee, Florida, from 6 Jun 2011 along the northern Gulf Coast.

The red cloud objects indicate positive CI forecasts, for which at least five of the six interest field tests were passed, and the blue cloud

objects represent the null forecasts, for which fewer than five interest field tests were passed. The yellow rings indicate correct positive CI

forecasts (hits), and the blue rings indicatemisses, where CI occurred but was not forecast. Note from the labeled time stamps that the first

series of CI forecasts was generated prior to any indication of convection from the radar.
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the next satellite image becomes available and the ‘‘new’’

couplet of image data is input into the algorithm (Fig. 4).

Also, there are instances in which a series of forecasts

may alternate from null to positive for the same cloud

object, usually indicating that the cloud top is slowly

growing (i.e., cooling) at a rate that is very close to the

algorithm’s critical thresholds.

It should be emphasized that the CI forecasts gener-

ated by SATCASTv2 are based solely on the very latest

set of available satellite images and, in part, from the re-

sulting TB trends that are derived from no more than two

points in time. SATCASTv2 incorporates diagnostic in-

formation such as the current cloud-top height, cloud-top

glaciation, and updraft strength of potentially convective

clouds. Its purpose, however, is to use this information

to infer (from linear extrapolation) which immature cu-

mulus clouds that are showing evidence of recent devel-

opment will continue to grow into precipitating, mature

convective storms. Therefore, the diagnostic assessment

is utilized in such a way as to produce prognostic fore-

casts of likely CI events. There are instances in which

this inference is incorrect, as when cloud growth ends

before CI occurs.

4. Validation

a. Approach

Validation of SATCASTv2 was accomplished using

a dichotomous forecast verification technique. To com-

pute accurate statistics, a 2 3 2 contingency table was

developed (Table 2). For our purposes, this contingency

table was populated on the basis of the answers to the

following two questions: 1) Did the algorithm predict

the CI event? 2) Was the CI event observed? A CI fore-

cast was categorized as a ‘‘hit’’ when the answer to both

questions was ‘‘yes,’’ considering all positive CI fore-

casts. A CI forecast was categorized as a ‘‘correct neg-

ative’’ when the answer to both questionswas ‘‘no.’’ These

assessments considered null CI forecasts. Similarly, a

‘‘false alarm’’ was countedwhen the algorithm predicted

a CI event but CI was not observed, and a ‘‘miss’’ was

counted when the algorithm did not predict a CI event

but an event was observed. Each of these instances was

tallied in the contingency table for the calculation of

validation statistics.

To fill the contingency table, each cloud-object CI

forecast was compared with 0.58-elevation-angle radar

data up to 2 h in the future inside a domain that en-

circled a given radar site with a radius of ;75 km. This

set radius was used in conjunction with the 0.58 radar
elevation angle to ensure consistency and to make sure

that no low-topped convective events weremissed because

of overshooting of the radar beam at greater distances

from the radar site. Furthermore, using this 75-km ra-

dius helped to avoid the decreased resolution of radar

data at farther distances from a site. The $35-dBZ

precipitation-intensity threshold was determined from

National Weather Service Weather Surveillance Radar-

1988 Doppler (WSR-88D) base reflectivity for the de-

termination of CI events, because this is a metric that is

prominently found in the literature (Mueller et al. 2003;

Roberts andRutledge 2003;Mecikalski andBedka 2006).

The validation was approached subjectively to ensure

high accuracy in the results and to avoid introducing

errors that are inherent to an objective validation ap-

proach. Such errors that were avoided by employing

a subjective validation technique had to do with the ease

in determining which occurrences of $35-dBZ radar

echoes were convective in nature, as opposed to strati-

form or melting-layer radar echoes. Furthermore, the

subjective approach allowed for simple identification

of new CI events without confusing them with ongoing

convective storms, which would have been another dif-

ficult problem to overcome in an objective validation

approach.

Once the contingency tables were populated, statistics

were computed. A list of the statistics developed for this

study can be found in Table 3. The validation study was

conducted over four independent regions across the

CONUS during the spring/summer of 2010. These four

regions were selected on the basis of the unique con-

vective regimes existing within each area. The purpose

for such a diversified selection was to determine the po-

tential presence of any convective regime bias within the

algorithm, with regard to any significant differences in

the CI forecast output. For each case day, all CI fore-

casts, both positive and null, that were available within

the preset radial domains were included in the study. In

total, 9943 cloud-object CI forecasts were validated. The

associated performance statistics from this validation effort

of the first seasonal preliminary run of the SATCASTv2

algorithm are shown in Tables 4 and 5. The four regions

used to conduct the validation encompass the following

locations:

1) Melbourne, Florida—This validation period ranged

from 1 to 3 June 2010, and the convective regime was

characterized by tropical convection and sea-breeze

thunderstorm activity. The Melbourne radar site was

used for truth data. A total of 2010 CI object forecasts

were validated, and 262 CI events were considered.

2) Memphis, Tennessee—This validation period ranged

from 24 to 25 May 2010, and the region was domi-

nated by general ‘‘airmass’’ thunderstorm activity.

The Memphis radar site was used for truth data, and
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FIG. 4. Examples of (middle) SATCASTv2 output, accompanied by corresponding (top) visible satellite data and (bottom) validating

WSR-88D 0.58 base-reflectivity radar data from Jacksonville, Florida, from 6 Jun 2011 over northern Florida and southern Georgia. The

yellow rings indicate hits, and the green rings indicate a miss. Note from the labeled time stamps that the first series of CI forecasts was

generated prior to any indication of convection from the radar. Also, note that some of the cloud objects that originally produced null CI

forecasts generated positive CI forecasts in subsequent outputs of the product.
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829 CI object forecasts were validated, with 212 CI

events considered. There were fewer forecasts vali-

dated for this region because widespread cirrus con-

tamination prevented the algorithm from generating

many forecasts.

3) Central United States/Great Plains—This validation

period occurred on 16 July 2010. The environment

was highly unstable [surface-based convective avail-

able potential energy (SBCAPE) of 3000–6000 J kg21

across the domain], with several reports of severe

weather in the form of large hail and damaging wind

from thunderstorms. The radar sites used for truth

data were Springfield, Missouri; Wichita, Kansas;

Topeka, Kansas; Kansas City, Missouri; and Omaha,

Nebraska. A total of 4275 CI object forecasts were

validated, with 203 CI events found.

4) Northeastern United States—This validation period

ranged from 26 to 27 June 2010 and was character-

ized by a quickly transitioning convective environ-

ment, asmultiple shortwave troughs propagated across

the region around a larger upper-level trough located

to the north. The radars used for truth data were

Cincinnati, Ohio; Cleveland, Ohio; Detroit,Michigan;

and Pittsburgh, Pennsylvania. A total of 2829 CI

object forecasts were validated, and 127 CI events

were considered.

As of the writing of this paper, the SATCASTv2 al-

gorithm has not yet been implemented using data from

the GOES-11/West satellite. Once this is accomplished

at some future date, it is hoped that a full season of

convection can be observed and validated within the

algorithm over the mountain regions of the western

United States. The scarcity of available radar data for

verification purposes in that region will be an issue that

will have to be addressed when that time arrives.

b. Results and discussion

The contingency tables and statistics are broken into

three classes. Class 1 relates to all CI forecasts and

corresponding CI events that were associated only with

‘‘tracked cloud objects’’ [first column(s) of Tables 4 and

5]. In other words, this class considers only those CI

events that had any forecast (positive or null) associated

with them, ignoring unrelated misses that resulted from

cirrus contamination and the inability to track cloud

objects because of the low temporal resolution of the

current GOES instrument. These statistics help to gauge

how SATCASTv2 actually performs when it can track

accurately—a taskmore easily accomplishedwith higher-

temporal-resolution data—and therefore can evaluate

the properties of cloud objects, although errors still exist

in this subset (see section 5). In this respect, more em-

phasis can be placed on the combination of cloud OT

and multispectral differencing techniques that are cen-

tral to the SATCASTv2 algorithm.

TABLE 2. Dichotomous forecast verification contingency table

used to calculate validation statistics for this study.

Obs 5 yes Obs 5 no

Forecast 5 yes Hits (H) False alarms (FA)

Forecast 5 no Misses (M) Correct negatives (CN)

TABLE 3. List of statistical equations that were derived from the

forecast verification contingency table and were used to quantify

the performance of the version of the SATCASTv2 algorithm used

for this study. The acronyms POD, POFD, and FAR are defined in

section 4b.

POD H/(H 1 M)

False-alarm rate, or POFD FA/(FA 1 CN)

FAR FA/(FA 1 H)

Accuracy
(H1CN)

(H1CN1M1FA)

TABLE 4. Contingency tables generated from the forecast output

from the SATCASTv2 algorithm for all study regions, broken into

three classes of statistical evaluation. The four cells below each

class label correspond to the quadrant structure of the contingency

table diagram in Table 2; that is, the top-left cell is H, the bottom-

left cell is M, the top-right cell is FA, and the bottom-right cell is

CN. Note that only the number of missesM changes for each class.

‘‘Class 1’’ relates to all CI forecasts and corresponding CI events

that were associated only with ‘‘tracked cloud objects,’’ and class 2

represents all CI events documented in the validation study,

whether or not they were associated with algorithm output fore-

casts, with the exception of those masked or affected by cirrus

contamination. Class 3 represents all documentedCI events for this

validation study, including those that occurred beneath thick cirrus

clouds as well as those that were not associated with any algorithm

forecast output.

Class 1 Class 2 Class 3

255 308 255 308 255 308

99 9281 190 9281 549 9281

TABLE 5. Validation statistics and averaged lead times from the

referenced version of the SATCASTv2 algorithm for all study re-

gions, broken into the three classes of statistical evaluation. Note

that only the PODand accuracy statistics change for each class. See

Table 4 for definitions of the three classes listed.

Class 1 Class 2 Class 3

POD 72% 57% 32%

POFD 3% 3% 3%

FAR 55% 55% 55%

Accuracy 96% 95% 92%

Lead time (min) 29.6 29.6 29.6
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The second class of statistics (class 2) represents all CI

events documented in the validation study, whether or

not they were associated with algorithm output fore-

casts, with the exception of those masked or affected by

cirrus contamination [middle column(s) of Tables 4 and

5]. The only difference between class 1 and class 2 is that

the number of misses is greater in the second class of

statistics, which are the result of CI events that occurred

with no related CI forecasts in the vicinity. A compari-

son between class 2 and class 1 shows the need for higher-

temporal-resolution satellite data input for SATCASTv2

for the purpose of tracking cloud objects. If the clouds

cannot be tracked, no forecasts can be made, and the

result is more CI events that occur with no associated CI

forecasts.

The class-3 set of statistics represents all documented

CI events for this validation study, including those that

occurred beneath thick cirrus clouds as well as those that

were not associated with any algorithm forecast output

[last column(s) in Tables 4 and 5]. These values take into

account all possible limitations, and by comparison with

the other two sets of figures, show how detrimental cir-

rus obstruction is to nowcasting CI using a satellite-based

system.

Note that only the probability of detection (POD) and

the accuracy actually change across all three classes of

statistics, since these are the only values that are affected

by misses. In addition, the accuracy remains .90% for

all classes; this elevated level of performance is, how-

ever, largely due to the high number of correct negative

forecasts tallied, as seen in the contingency tables. For

the same reason, the probability of false detection (POFD),

also referred to as the false-alarm rate, is very low at 3%.

In essence, when the algorithm produces a null forecast,

there is a very high likelihood that no associated CI will

be observed in the near future. It is worth noting that the

contingency-table numbers were the result of all gen-

erated forecasts for the entire study period within the

preset domains and were consequently selected without

bias. Also, only convectively active days were consid-

ered for this study. Thus, there was no artificial inflation

in the number of correct negatives. As can be observed

on any typical convectively active day, the largemajority

of pre-CI cumuliform clouds that were found within the

study domains simply did not develop into mature con-

vection (;96.4%), leaving a relatively small subset that

did lead to CI. Therefore, since this is a cloud-object-

based algorithm, it is important to consider all individual

CI forecasts when evaluating its performance, even the

null forecasts, as long as the other performance statistics

are also considered.

Although the accuracy changed little for each class of

performance values, the statistic that was most negatively

affected in the succession of classes was the POD.

Starting at 72% in class 1, the PODdropped to 57%when

non-forecast-related misses were considered in class 2,

and it dropped further to 32%when cirrus-maskedmisses

were also considered in class 3. Once again, the added

misses in class 2 can be explainedmainly by the difficulty

in properly tracking clouds when using satellite data with

temporal resolutions of 15–30 min. From the class-3

POD, it is evident that cirrus contamination has themost

profound negative effect on the ability of SATCASTv2

to produce CI forecasts.

Also included in the list of statistics is the average lead

time (Table 5) that was calculated for all hits. The av-

erage CI forecast lead time for 35-dBZ echoes was

;30 min, with a median value of 26 min, when all study

domains were considered, and it ranged anywhere from

0 min (termed a ‘‘diagnostic’’ forecast with no added

value over radar data) to up to ;2 h for a few extreme

cases. Tomaintain consistency, the lead time for each hit

was calculated as the difference between the satellite-

image time stamp of the most recent input GOES image

and the radar time of the corresponding CI event.

It is clear that one of the main issues associated with

the SATCASTv2 algorithm is the number of false alarms.

With an average false-alarm ratio (FAR) of 55% for all

study domains, there is much room for improvement.

Many of the problems leading to the high FAR are

identified in the following section, including potential

errors in cloud OT, issues with thin-cirrus contamina-

tion, and problems with new cumulus development.

Manual testing of the CI interest fields, with the omis-

sion of automated cloudOT, has shown that a significant

number of CI-forecast false alarms are eliminated when

applying the multispectral differencing techniques used

in the SATCASTv2 algorithm, when compared with

other techniques that use only the 10.7-mm cooling rate

for nowcasting CI events (Walker andMecikalski 2011).

Research is ongoing toward decreasing potential sour-

ces of error within the algorithm while increasing the

accuracy of the automated cloud OT method. It is be-

lieved that this will effectively reduce the FARs for

SATCASTv2 while helping to preserve or increase the

POD statistic.

To identify potential variations in the algorithm per-

formance as a result of regional and environmental

differences, the statistics were also tallied for each of the

four regional study domains (Table 6). From Table 6, it

is evident that the algorithm performs most poorly in

the tropical environment of coastal Florida, where the

shortest lead times and lowest PODs are found. The

reduced average lead times (;24 min) are related to

previous findings that growing clouds in these types of

warm tropical regimes are very efficient at producing
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heavy precipitation (Li et al. 2002) and, therefore, do so

more quickly than in other environments. Because of

the generalized global critical thresholds used in the CI

interest-field tests in the current SATCASTv2 algo-

rithm, several of the growing cloud objects in this study

did not exhibit vigorous enough growth to trigger posi-

tive CI forecasts, yet vigorous vertical growth was not

necessary for the clouds to produce a $35-dBZ radar

echo, resulting in a number of missed forecasts. This

finding is substantiated when the PODs from the Mel-

bourne study region are compared with those from the

Memphis region. The stability profiles for these study do-

mains were similar, both possessing a significant amount

of SBCAPE (1000–3000 J kg21) and a general lack of

inhibition (CIN) (,25 J kg21), yet the Memphis envi-

ronment was nontropical in nature. The class-2 and class-3

POD statistics are very similar, indicating that a com-

parable number of misses resulted from the inability of

the algorithm to track the CI-related cloud objects for

various reasons stated above. At 74%, the class-1 POD

statistics are significantly higher for the Memphis do-

main than in the Melbourne domain, where the class-1

POD is at 54%. This would indicate a significant dif-

ference in the number of missed CI forecasts for all

tracked cloud objects between the two study domains. In

this situation, the CI interest-field global thresholds used

in SATCASTv2 certainly proved much more beneficial

in the Memphis domain than in the Melbourne domain,

where many more misses resulted for the tracked cloud

objects.

Out of the four study domains, the overall best per-

formance statistics across all classes exist for the central

U.S./Great Plains region. Although the FARs and POFDs

here are comparable to the other regional statistics, this

domain yielded the highest PODs in tandem with the

longest lead times. Because the convective cloud de-

velopment is usually more vigorous in such convective

regimes, the pre-CI signals are stronger, making them

easier for SATCASTv2 to identify (i.e., clouds in this

type of environment are usually growing very quickly,

exceeding all critical thresholds and making detection

of future CI less difficult). For this region, most false

alarms occurred when low-level clouds exhibited short-

lived rapid growth until they reached the height of the

midlevel capping inversion. Nevertheless, when the clouds

were growing, either before or after the erosion of the

capping inversion, they were usually growing at signifi-

cant enough rates to trigger positive CI forecasts, result-

ing in a greater number of hits.

If one considers only the class-2 POD statistics, the

algorithm performed significantly better in both the

central U.S./Great Plains and in the northeastern U.S.

domains (78% and 67%, respectively), as compared with

the Melbourne and Memphis regions (43% and 45%,

respectively). This signifies that the number of misses

resulting from untracked cloud objects (i.e., nonforecasts)

was much lower in the two formerly mentioned valida-

tion domains, and it indicates an improved ability of the

cloud OT scheme to perform in those associated envi-

ronments. This finding is further substantiated by the

strong similarities in class-1 statistics (for tracked-only

cloud objects) between the Memphis and northeastern

U.S. study regions. That the statistics are so alike in class

1 but so different in class 2 in these domains shows that

the multispectral approach yields similar results for all

tracked cloud objects in these two study areas but that

themain difference lies in the number ofmisses resulting

from the inability to track asmany clouds in theMemphis

domain. The decreased performance of the cloud OT

scheme in the Melbourne and Memphis study regions

may be a direct result of the need to use global NWP

forecast winds as a first guess for the derived MAMVs,

used to facilitate cloud OT. The average 0000 UTC

700-hPa wind speed (a typical pressure for cumulus cloud

tops in this study, as output from theMAMV algorithm)

across the central U.S./Great Plains and northeastern

U.S. domains was ;13.1 m s21, whereas the average

0000 UTC 700-hPa wind speed across the Melbourne

andMemphis domains was;5.4 m s21. Previous studies

have shown that NWP models have a reduced accuracy

TABLE 6. Validation statistics and averaged lead times from the referenced version of the SATCASTv2 algorithm, broken into the three

classes of statistical evaluation for each of the four study regions. Once again, note that only the PODand accuracy statistics change for the

different classes. See Table 4 for definitions of the three classes listed.

Melbourne Memphis

Central United States/

Great Plains

Northeastern United

States

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

POD 54% 43% 21% 74% 45% 24% 85% 78% 46% 75% 67% 44%

POFD 4% 4% 4% 6% 6% 6% 3% 3% 3% 2% 2% 2%

FAR 60% 60% 60% 48% 48% 48% 55% 55% 55% 54% 54% 54%

Accuracy 94% 92% 87% 92% 87% 78% 97% 97% 95% 97% 97% 95%

Lead time (min) 23.8 23.8 23.8 32.7 32.7 32.7 32.9 32.9 32.9 27.4 27.4 27.4
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in forecasting lighter winds in less synoptically active

environments (Engel and Ebert 2007; Huang et al. 2008).

5. Potential sources of error

Although the theory behind the SATCASTv2 algo-

rithm is sound in its approach to monitoring cloud-top

characteristics for the purpose of CI nowcasting, there

are potential sources of error that are inherent to any

such operational forecast algorithm. These errors mainly

originate from problems in cloud OT and in situations

related to cirrus-cloud contamination and subresolution

initial cloud development, and these are discussed below.

a. Cloud OT errors

Twomain potential causes of error in the SATCASTv2

algorithm are related to the cloud OT routine. The first

one occurs as a result of false tracking, when small inac-

curacies in the local MAMV field cause a cloud object

from T1 to be mistakenly attributed as the same cloud

object at T2 (Fig. 5). This error will affect none of the

static CI interest-field calculations, those that use only

the latest satellite data from T2; all of the calculations

from the temporal trend tests (see listed items of CI

interest field tests in Table 1 containing references to

time trends) will be incorrect, however. Sometimes, if

the two clouds that are mistakenly identified as the same

cloud object are similar enough in cloud-top character-

istics, then the resulting output of the algorithm is ef-

fectively unaltered. Yet, in other situations, as is the case

in Figs. 5a–d, the output CI forecast for the cloud object

is either mistakenly positive or mistakenly null. This, in

turn leads to an increase in false alarms or an increase

in misses, respectively. The current cloud OT method

greatly mitigates tracking errors when compared with

the original SATCAST single-pixel tracking method, but

not all tracking errors can be eliminated. In the given

example, the cloud objects at the top in Figs. 5a and 5b

are the same, with a representative 10.7-mm TB of2228C
that does not change in the time elapsed between images.

FIG. 5. Example of false tracking of cloud objects. (a) Blue polygons represent two cloud objects from T1, and

(b) yellow polygons represent the same two cloud objects at T2. (c) Dashed red arrows and blue-shaded cloud objects

indicate false vectors and resulting time-extrapolated displacement of T1 objects to expected positions at T2, while

solid black arrows and yellow-shaded cloud objects indicate true motion vectors and actual locations of T2 cloud

objects. The gray-shaded area represents overlap between an extrapolated T1 cloud object and an actual T2 cloud

object. (d) The 10.7-mmTB trend between the T1 andT2 images is actually 08C for both cloud objects; because of false

tracking, however, the perceived 10.7-mm TB trend is 2108C for one of the cloud objects.
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This is also true for the cloud objects at the bottom in

Figs. 5a and 5b that have a representative 10.7-mm TB of

2128C. In Fig. 5c, the dashed red arrows and resulting

placement of time-extrapolated T1 cloud objects are

the result of erroneously derived MAMVs, whereas the

solid black arrows indicate the true vectors and place-

ment of T2 objects. Because there is significant overlap

between one of the time-extrapolated T1 cloud objects

and one of the actual T2 objects, the algorithm concludes

that the two cloud objects are the same in T1 and in T2.

As a result, the temporal-trend CI interest fields will

yield false calculations. In this case the 10.7-mmTB trend

shows a 2108C cooling rate between T1 and T2 for one

of the cloud objects, and the algorithm completely ignores

the other cloud objects that were not tracked (Fig. 5d).

In fact, there should be two tracked cloud objects pres-

ent, neither of which has a cooling cloud top.

The second potential error that could originate in the

cloudOT routine is when a single cloud object fromT1 is

broken into two or more cloud objects at T2. Although

rare, there are instances, usually associatedwith elongated

cloud objects, when a gap forms between the cloud-filled

pixels of a cloud object between consecutive satellite

images, essentially splitting one cloud object into two.

Because of the way that the cloud OT routine is designed

to handle cloud-object merging, which is much more

common than splitting, the result is two or more cloud

objects at T2 ending up with the same IDN as the orig-

inal single cloud object fromT1 (Fig. 6). Using the coldest

subset of pixels from the tracked objects, as described

above, will help to provide a more accurate CI forecast

in the end; this same forecast will be applied to all

corresponding T2 objects possessing the same IDN,

however. So, if one accurate positive CI forecast is gen-

erated in this situation, then one correct ‘‘hit’’ will be

tallied for the statistics, but all of the duplicate forecasts

will most likely fall into the false-alarm category. Simi-

larly, if one inaccurate positive CI forecast is generated,

then there would be multiple instances of false alarms

counted in the statistics. Therefore, the resulting valida-

tion statistics will become negatively skewed as a result of

such errors in cloud OT.

b. Errors from cirrus-cloud advection

Although ‘‘cirrus cloud’’ is one of the cloud types that

is explicitly classified in the CCM and omitted from

processing, there are many situations in which high, thin

cirrus, sometimes found to be advecting outward from

the edge of a mature cumulonimbus cirrus shield, es-

capes proper identification. In the algorithm, if the CCM

does not detect the presence of such a cirrus deck, then it

assumes that only the low-level clouds exist and pro-

cesses the cloud objects accordingly.When this happens,

the spectral signatures of the low-level clouds are dis-

torted, making them appear cooler, with higher cloud

tops than actually exist. This is a result of the satellite

instrument sensing radiance contributions that are emit-

ted, both from the low-level clouds and from the high-

level thin cirrus for the same geographic location (Chang

and Li 2003).

Such occurrences may adversely affect the quality of

the CI forecast output. For example, if there is an im-

mature cumulus cloud that is correctly tracked by the

algorithm from T1 to T2, with no actual vertical growth,

undetected cirrus contamination could cause the algo-

rithm to incorrectly diagnose significant growth of this

low-level cumulus cloud. This would happen if the cirrus

cloud is advected over the cumulus cloud after T1 and is

still located overhead at T2. Then, the satellite-sensed

representation of the cumulus cloud would be signifi-

cantly altered. Because the TBs from all IR channels

would be would be significantly lower for the cloud at

T2, all of the temporal trend CI interest fields would

provide calculations that indicate the cumulus cloud top

cooled and grew vertically, and the algorithm would

likely produce a positive CI forecast that would result

in a false alarm. It is extremely difficult to objectively

identify such thin cirrus clouds, because of their optically

thin nature (Saunders 1986), yet the best way to elimi-

nate such CI forecasting errors is to improve the de-

tection of these clouds.

c. Errors from subgrid cloud growth

Another cloud-related CI forecast error that can oc-

cur within this algorithm has to do with the development

FIG. 6. Example of cloud-object splitting, resulting in (a) one

cloud object at T1 with a given IDN—the number 3 in this case—

and (b) two or more cloud objects at T2 with the same IDN. Both

cloud objects at T2 will receive the same CI forecast, be it positive

or null.
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of new pre-CI clouds at horizontal sizes below the spa-

tial resolution of the IR channel sensors, which would be

4 km 3 4 km at nadir for GOES-12–15. As new clouds

form, they are often detected and classified by the CCM

in the early stages of development, since the CCM in-

corporates the 1-km visible-channel data from GOES

as a primary input. When these early-stage cumuliform

clouds are detected, however, they usually do not have

enough horizontal width required to fill a full 4 km 3
4 km IR pixel. The result is a set of TBs that are derived

from a combination of radiances that originate both from

the tops of small clouds and from the surface (Fig. 7). As

these clouds continue in their initial stage of development

between satellite-image scans, usually growing in width

much more so than in height, they soon begin to fill the

IR pixels. Since this limits the amount of surface-emitted

radiation detected by the satellite sensor for a given

pixel and concurrently increases the detected amount of

cooler, cloud-top-emitted radiation, the perceived TBs

are reduced in the algorithm for those cloud objects. The

algorithm would interpret this signal as rapid vertical

cloud development, and a positive CI forecast would

likely be generated.Although newly formed clouds rarely

progress immediately into mature convective clouds and

thunderstorms, it does happen in environments for which

the SBCAPE is high and the CIN is low or nonexistent.

For the more common scenario mentioned above in

which CIN is often prevalent and IR pixel filling is the

case, however, a positive CI forecast is usually the result,

which is generated for the wrong reasons and typically

leads to false alarms.

d. Detection of vertical cloud development beneath
capping inversions

The high FAR scores from SATCASTv2 are a notable

concern, although sometimes they are the product of

correctly detected vertical cloud growth prior to being

inhibited from further development as a result of mid-

level capping inversions. Despite being ultimately in-

correct, in some cases these false-alarm forecasts can

actually be used by a forecaster to increase situational

awareness of an eroding capping inversion in advance

of CI. Shown in Fig. 8 is an example of such an event.

A sounding from Lincoln, Illinois, at 1200 UTC 24 May

2011 is included (Fig. 9), showing a weak inversion be-

tween 700 and 790 hPa, which acted to suppress CI over

this region until after 1715 UTC.

From Fig. 8, SATCASTv2 forecast output is shown

every ;15 min from 1602 to 1745 UTC, with accompa-

nying radar spanning the time 1630–1815 UTC. Note

FIG. 7. Illustration showing how subresolution newly developing clouds may be errone-

ously perceived as possessing rapidly cooling cloud tops in the CI algorithm because of the

4-km spatial resolution of theGOES-13 IR channels. (a) At T1, the actual cloud-top 10.7-mm

TB of a newly detected developing cumulus cloud is 108C (left image) with an underlying

surface TB of 308C, yet the 10.7-mm IR channel perceives aTB of 258C (middle image). (b) By

the next satellite scan, at T2, the cloud has developed in horizontal extent (left image), but

the cloud-top TB has only actually cooled by 18C. The satellite-perceived TB for this channel

is now 148C (middle image), however, which the CI algorithm would interpret as a .108C
cooling rate for this particular cloud object, mapped back to a 1-km resolution [right images

in (a) and (b)].
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FIG. 8. (left) GOES 1-km visible-imagery, (center) SATCASTv2 output nowcasts, and (right) Next Generation

Weather Radar (NEXRAD) radar reflectivity (dBZ) valid at the 2108C level, for the times listed on 24 May 2011.

Note that SATCASTv2 objects pertain to CI occurrences 30–45 min into the future, and hence the satellite and radar

data are offset by;30 min in this example. For the SATCASTv2 images, red objects are CI ‘‘positive CI nowcasts’’

and blue objects are ‘‘null CI nowcasts.’’ The NEXRAD echo intensities become yellow when greater than 35 dBZ.

The CI nowcast false alarms are shown as white circles at 1615 and 1632 UTC, whereas yellow circles are correct

nowcasts, shown until 1702UTC. For a situational-awareness tool, SATCASTv2 provides indication that the capping

inversion (see Fig. 9, described below) is weakening across northern Illinois, as the false alarms precede actual CI by

75 min (1615 vs 1730UTC, when the first radar echoes are seen). TheCI forecasts produced on or after 1645UTC are

mostly correct, with fewer false alarms. See the text for further description.
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that CI forecast ‘‘hits’’ identified by SATCASTv2 are

verified as $35-dBZ radar echoes ;30–45 min into the

future, downstream as the clouds move (viz., east in the

example). These first radar echoes appear at 1730 UTC,

which correspond to the positive CI forecasts from the

1645 and 1702 UTC SATCASTv2 output images. In

the forecast output preceding 1645 UTC, however, the

FARs (white-circled red cloud objects) can be used to

highlight locations where convective development is grad-

ually weakening the capping inversion. After 1730 UTC,

a high spatial correlation exists between SATCASTv2-

identified CI nowcasts and 30–45-min radar echoes

.35 dBZ in intensity, as storms developed across Illi-

nois and Indiana. In this situation, SATCASTv2 pro-

vides indication that the capping inversion (see Fig. 9) is

weakening across this region, as the false alarms precede

actual CI by 75 min (1615 versus 1730 UTC, when the

first radar echoes are seen). CI forecasts that are

produced onward from 1645 UTC are mostly correct,

with significantly fewer false alarms.

6. Conclusions

This study demonstrates the utility of an OT approach

within SATCASTv2, a 0–2-h CI nowcasting algorithm,

and subsequently provides validation statistics to dem-

onstrate the method’s skill at forecasting new CI. The

OT approach used in SATCASTv2 is a modified form of

that presented in Zinner et al. (2008). We propose that

cloudOT is a physically consistent way ofmonitoring for

CI, such that real-time diagnoses of growing cumulus

clouds can be used to linearly extrapolate trends up to

2-h time periods. TheOTmethod improves cloud tracking

over the single-pixel approach of Mecikalski and Bedka

(2006) yet preserves the use of cumulus-cloud-specific

identification via the CCM and the utility of MAMVs to

look for object overlap between successive geostationary

satellite images.

For the skill assessments, 9943 CI nowcasts and 804 CI

events were analyzed. The best results occurred in the

central U.S./Great Plains domain, where the POD and

FAR reached 85% and 55%, respectively, for tracked

cloud objects, ignoring missed forecasts resulting from

cirrus cloud contamination or an inability to track cloud

objects. The FARs were attributed to difficulties in-

herent to the CI nowcasting problem (i.e., not all cu-

mulus clouds maintain growth in a linear fashion) and to

errors resulting from subgrid cloud growth, thin-cirrus

contamination, and tracking. PODs were seen to de-

crease for CI events in Florida. Discussion is provided

on why these statistical skill results vary as a function of

geographical region, and include 1) variations in cloud

development rates as a result of differences in instability

(SBCAPE); 2) higher moisture contents in the more

tropical environments, leading to warm-rain processes

forming in new cumulus clouds at early stages, and there-

fore a shorter lead time for the detection of $35-dBZ

rainfall intensities; and 3) tracking errors associated with

slow ormore random cumulus-cloudmotions in advance

of CI in coastal regions and in less dynamic synoptic

environments. The best results (highest POD, lowest

FAR, and longest lead times) were seen in the central

United States/Great Plains, and the worst performance

statistics were found in the more tropical location of

Melbourne. Average nowcast lead times for the consid-

ered study regions were generally between 24 and 33 min,

similar to findings from Mecikalski et al. (2008), yet in-

dividual outlier lead times ranged from 0 min to 2 h.

Accuracies are greater than 90%, mainly because the

algorithm correctly predicts non-CI events a significant

portion of the time, whereas SATCASTv2 suffers overall

FIG. 9. Sounding at 1200 UTC 24 May 2011 for Lincoln. The

environmental temperature is defined by the red line, and the

dewpoint temperature is defined by the green line. A midlevel

temperature inversion is highlighted by the black circle over the

temperature trace, which exists from approximately 700 to 790 hPa.
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because CI events that occur under preexisting cirrus

cloud decks cannot be detected (i.e., the class-3 results).

Overall, these skill score results likely demonstrate

the predictability limits of a CI nowcast system that is

based on linear extrapolation and constant thresholds,

given the large subjectively analyzed dataset. Specifi-

cally, we come to this conclusion because not all growing

cumulus clouds (despite reaching critical thresholds when

observed with geostationary, 15–30-min-resolution IR-

imagery interest fields) attain CI, for reasons related to

the presence of capping inversions, short-lived updrafts,

limited moisture, and/or strong wind shear (that weakens

or destroys an updraft).

Improvements to the overall SATCASTv2 algorithm

will come as the result of improvements to its integral

components and input data. As evidenced from this study,

two improvements that would prove very beneficial to

the algorithm include a changeover to dynamic (non-

global) interest-field thresholds to better fit regional

conditions (such as in the tropical environments of coastal

Florida) and a further refinement of the cloudOTmethod

to reduce residual errors even more so than the recent

tracking-method enhancement.

It is believed, however, that many of these errors will

be greatly diminished with use of higher temporal-,

spatial-, and spectral-resolution data from newer genera-

tions of geostationary satellite instruments: the GOES-R

series of instruments. Decreased intervals (5 min; Schmit

et al. 2005) between successive satellite images will lead

to a greater accuracy in the derivation of MAMVs and

better overlapping between the same cloud objects in the

cloud OT method. Furthermore, the availability of more

spectral channels (16 total; Schmit et al. 2005) will allow

for the use of more CI interest fields, which can provide

additional information about the cloud-top characteris-

tics needed to diagnose the potential vertical growth of

convective clouds toward CI.

Ongoing enhancements to the SATCASTv2 algo-

rithm will include the implementation of nighttime and

satellite rapid-scan data operations. Beyond that, prom-

ising research is being performed to help with the fore-

casting of CI beneath thin cirrus (a significant problem, as

revealed in the class-3 statistics above) as well as with the

reduction of false alarms. Statistical approaches that in-

clude nonsatellite datasets (e.g., numerical weather pre-

dictionmodels) as input are currently being tested to help

to optimize the CI interest fields, some of which have

already produced preliminary statistics with FARs below

30% and PODs above 80% (not shown in the study pre-

sented here). The goal of the authors is to continue

building upon the current SATCASTv2 framework and

to incrementally transfer many of these new research

findings into the operational algorithm as soon as possible.
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